• Deutsch
  • English
  • Search
  • ABOUT US
    • Profile
    • Organizational Structure
      • Supervisory Board
      • Board of Directors and Management
      • Scientific Directorate
      • Industrial Advisory Board
    • Economic Development
    • Projects
    • Partner universities and institutes
    • Spin-off companies
    • Committees and associations
    • Compliance and anti-corruption policy
    • Contact and map
    • Terms and Conditions
  • DEPARTMENTS
    • Optical Components
      • Photonic Materials Group
      • Smart Optical Devices Group
      • Optical Coatings Group
      • Optics Integration Group
    • Laser Development
      • Fiber Optics Group
      • Optical Systems Group
      • Solid-State Lasers Group
      • Ultrafast Photonics Group
    • Industrial and Biomedical Optics
      • Imaging and Metrology Group
      • Biophotonics Group
      • Food and Farming Group
    • Production and Systems
      • Additive Manufacturing – Polymers and Multi-Materials Group
      • Glass Group
      • Composites Group
      • Laser Micromachining Group
    • Materials and Processes
      • Additive Manufacturing - Metals Group
      • Joining and Cutting of Metals Group
      • Machines and Controls Group
      • Underwater Technology Group
      • Safety Technology Group
    • Services
  • BUSINESS AREAS
    • Additive Manufacturing
    • Medical Technology
    • Space Technology
  • SERVICES
    • Manufacturing processes and materials processing
      • Laser processing of composite materials
      • Laser processing of metals
      • Additive Manufacturing
      • Laser-based glass processing
      • Laser processing of organic materials
    • Optical components
      • Coating and thin-film technology
      • Characterization
    • Analysis techniques
      • Sample preparation
      • Analysis methods
    • Laser development
      • Consulting & development
      • Characterization
    • Consulting
      • Consulting
      • Feasibility studies
      • Laser and occupational safety
  • PUBLICATIONS
    • Press Releases
    • News
    • LZH News Subscription
    • Dissertations
    • Scientific Publications
    • LZH Videos
    • Laser Safety Database
  • JOBS & EDUCATION
    • Open Positions
    • Internships, student papers and theses
Laser Zentrum Hannover e.V.
LZH Publications

Modeling of photoluminescence in laser-based lighting systems

  • Home
  • Modeling of photoluminescence in laser-based lighting systems
E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, D. Kracht
Modeling of photoluminescence in laser-based lighting systems
SPIE Proceedings Vol. 10603: Photonics, Devices and Systems VII , 1060318-1-7 (2017)
Publication type: Journal Article (reviewed)
DOI: 10.1117/12.2292735

Abstract

The development of laser-based lighting systems has been the latest step towards a revolution in illumination technology brought about by solid-state lighting. Laser-activated remote phosphor systems produce white light sources with significantly higher luminance than LEDs. The weak point of such systems is often considered to be the conversion element. The high-intensity exciting laser beam in combination with the limited thermal conductivity of ceramic phosphor materials leads to thermal quenching, the phenomenon in which the emission efficiency decreases as temperature rises. For this reason, the aim of the presented study is the modeling of remote phosphor systems in order to investigate their thermal limitations and to calculate the parameters for optimizing the efficiency of such systems. The common approach to simulate remote phosphor systems utilizes a combination of different tools such as ray tracing algorithms and wave optics tools for describing the incident and converted light, whereas the modeling of the conversion process itself, i.e. photoluminescence, in most cases is circumvented by using the absorption and emission spectra of the phosphor material. In this study, we describe the processes involved in luminescence quantum-mechanically using the single-configurational-coordinate diagram as well as the Franck-Condon principle and propose a simulation model that incorporates the temperature dependence of these processes. Following an increasing awareness of climate change and environmental issues, the development of ecologically friendly lighting systems featuring low power consumption and high luminous efficiency is imperative more than ever. The better understanding of laser-based lighting systems is an important step towards that aim as they may improve on LEDs in the near future.

Social Networks

  • Twitter
  • RSS

 

  • ABOUT US
    • Profile
    • Organizational Structure
      • Supervisory Board
      • Board of Directors and Management
      • Scientific Directorate
      • Industrial Advisory Board
    • Economic Development
    • Projects
    • Partner universities and institutes
    • Spin-off companies
    • Committees and associations
    • Compliance and anti-corruption policy
    • Contact and map
    • Terms and Conditions
  • DEPARTMENTS
    • Optical Components
      • Photonic Materials Group
      • Smart Optical Devices Group
      • Optical Coatings Group
      • Optics Integration Group
    • Laser Development
      • Fiber Optics Group
      • Optical Systems Group
      • Solid-State Lasers Group
      • Ultrafast Photonics Group
    • Industrial and Biomedical Optics
      • Imaging and Metrology Group
      • Biophotonics Group
      • Food and Farming Group
    • Production and Systems
      • Additive Manufacturing – Polymers and Multi-Materials Group
      • Glass Group
      • Composites Group
      • Laser Micromachining Group
    • Materials and Processes
      • Additive Manufacturing - Metals Group
      • Joining and Cutting of Metals Group
      • Machines and Controls Group
      • Underwater Technology Group
      • Safety Technology Group
    • Services
  • BUSINESS AREAS
    • Additive Manufacturing
    • Medical Technology
    • Space Technology
  • SERVICES
    • Manufacturing processes and materials processing
      • Laser processing of composite materials
      • Laser processing of metals
      • Additive Manufacturing
      • Laser-based glass processing
      • Laser processing of organic materials
    • Optical components
      • Coating and thin-film technology
      • Characterization
    • Analysis techniques
      • Sample preparation
      • Analysis methods
    • Laser development
      • Consulting & development
      • Characterization
    • Consulting
      • Consulting
      • Feasibility studies
      • Laser and occupational safety
  • PUBLICATIONS
    • Press Releases
    • News
    • LZH News Subscription
    • Dissertations
    • Scientific Publications
    • LZH Videos
    • Laser Safety Database
  • JOBS & EDUCATION
    • Open Positions
    • Internships, student papers and theses

Contact

Laser Zentrum Hannover e.V.
Hollerithallee 8
30419 Hannover
Germany
Map & Hotel
Phone:
+49 511 2788-0
Fax:
+49 511 2788-100
E-Mail:
info@lzh.de
  • Privacy statement
  • Data Protection Officer
  • Imprint
  • Contact & Map

Copyright ©2021 Laser Zentrum Hannover e.V. All Rights Reserved.