• Deutsch
  • English
  • Search
  • ABOUT US
    • Profile
    • Organizational Structure
      • Supervisory Board
      • Board of Directors and Management
      • Scientific Directorate
      • Industrial Advisory Board
    • Economic Development
    • Projects
    • Partner universities and institutes
    • Spin-off companies
    • Committees and associations
    • Compliance and anti-corruption policy
    • Contact and map
    • Terms and Conditions
  • DEPARTMENTS
    • Optical Components
      • Photonic Materials Group
      • Smart Optical Devices Group
      • Optical Coatings Group
      • Optics Integration Group
    • Laser Development
      • Fiber Optics Group
      • Optical Systems Group
      • Solid-State Lasers Group
      • Ultrafast Photonics Group
    • Industrial and Biomedical Optics
      • Biophotonics Group
      • Food and Farming Group
    • Production and Systems
      • Additive Manufacturing – Polymers and Multi-Materials Group
      • Glass Group
      • Composites Group
      • Laser Micromachining Group
    • Materials and Processes
      • Additive Manufacturing - Metals Group
      • Joining and Cutting of Metals Group
      • Machines and Controls Group
      • Underwater Technology Group
      • Safety Technology Group
    • Services
  • BUSINESS AREAS
    • Additive Manufacturing
    • Medical Technology
    • Space Technology
  • SERVICES
    • Manufacturing processes and materials processing
      • Laser processing of composite materials
      • Laser processing of metals
      • Additive Manufacturing
      • Laser-based glass processing
      • Laser processing of organic materials
    • Optical components
      • Coating and thin-film technology
      • Characterization
    • Analysis techniques
      • Sample preparation
      • Analysis methods
    • Laser development
      • Consulting & development
      • Characterization
    • Consulting
      • Consulting
      • Feasibility studies
      • Laser and occupational safety
  • PUBLICATIONS
    • Press Releases
    • News
    • LZH News Subscription
    • Dissertations
    • Scientific Publications
    • LZH Videos
    • Laser Safety Database
  • JOBS & EDUCATION
    • Open Positions
    • Internships, student papers and theses
Laser Zentrum Hannover e.V.
LZH Publications

Single-frequency Er3+ doped phosphate fiber MOPA

  • Home
  • Single-frequency Er3+ doped phosphate fiber MOPA
P. Booker, M. Dürbeck, N. G. Boetti, D. Pugliese, S. Abrate, D. Milanese, M. Steinke, J. Neumann, D. Kracht
Single-frequency Er3+ doped phosphate fiber MOPA
Proc. Conference on Lasers and Electro-Optics & European Quantum Electronics Conference (CLEO®/Europe-EQEC 2019) , cj_p_17 (2019)
Publication type: Journal Article (non-reviewed)

Keywords: 

Erbium doped fiber amplifiers, Fused silica, Laser sources, Silica fibers, Stimulated Brillouin scattering, Stimulated scattering

Abstract

Single-frequency Er3+ doped fiber amplifiers in MOPA configuration are promising candidates to fulfil the challenging requirements of laser sources at 1.5 µm for the third generation of interferometric gravitational wave detectors (GWDs) [1]. An all-fiber design ensures excellent beam quality, -stability and reliability compared to bulk concepts. However, in monolithic systems high power operation gives rise to non-linear effects such as stimulated Brillouin scattering (SBS), which eventually limit the output capacity of such fiber MOPAs [2]. Since the threshold power for SBS scales inversely with the length and cross-section of the fiber, researchers placed much attention to enhance the Er3+ doping levels and therefore decrease necessary fiber length for sufficient signal amplification. However, already at moderately low doping concentrations Er3+ ions tend to form clusters in industry-standard fused silica fibers. Consequently, the short intra-cluster distances between adjacent Er3+ ions introduce quenching effects in terms of homogenous up-conversion processes (I13/2 + I13/2 ➔ I9/2 + I15/2). Thus, high inversion levels can reduce the pump-to-signal energy conversion efficiency and amplifier's output capacity since ions in the I9/2 state relax non-radiatively.

Social Networks

  • Twitter
  • RSS

 

  • ABOUT US
    • Profile
    • Organizational Structure
      • Supervisory Board
      • Board of Directors and Management
      • Scientific Directorate
      • Industrial Advisory Board
    • Economic Development
    • Projects
    • Partner universities and institutes
    • Spin-off companies
    • Committees and associations
    • Compliance and anti-corruption policy
    • Contact and map
    • Terms and Conditions
  • DEPARTMENTS
    • Optical Components
      • Photonic Materials Group
      • Smart Optical Devices Group
      • Optical Coatings Group
      • Optics Integration Group
    • Laser Development
      • Fiber Optics Group
      • Optical Systems Group
      • Solid-State Lasers Group
      • Ultrafast Photonics Group
    • Industrial and Biomedical Optics
      • Biophotonics Group
      • Food and Farming Group
    • Production and Systems
      • Additive Manufacturing – Polymers and Multi-Materials Group
      • Glass Group
      • Composites Group
      • Laser Micromachining Group
    • Materials and Processes
      • Additive Manufacturing - Metals Group
      • Joining and Cutting of Metals Group
      • Machines and Controls Group
      • Underwater Technology Group
      • Safety Technology Group
    • Services
  • BUSINESS AREAS
    • Additive Manufacturing
    • Medical Technology
    • Space Technology
  • SERVICES
    • Manufacturing processes and materials processing
      • Laser processing of composite materials
      • Laser processing of metals
      • Additive Manufacturing
      • Laser-based glass processing
      • Laser processing of organic materials
    • Optical components
      • Coating and thin-film technology
      • Characterization
    • Analysis techniques
      • Sample preparation
      • Analysis methods
    • Laser development
      • Consulting & development
      • Characterization
    • Consulting
      • Consulting
      • Feasibility studies
      • Laser and occupational safety
  • PUBLICATIONS
    • Press Releases
    • News
    • LZH News Subscription
    • Dissertations
    • Scientific Publications
    • LZH Videos
    • Laser Safety Database
  • JOBS & EDUCATION
    • Open Positions
    • Internships, student papers and theses

Contact

Laser Zentrum Hannover e.V.
Hollerithallee 8
30419 Hannover
Germany
Map & Hotel
Phone:
+49 511 2788-0
Fax:
+49 511 2788-100
E-Mail:
info@lzh.de
  • Privacy statement
  • Data Protection Officer
  • Imprint
  • Contact & Map

Copyright ©2021 Laser Zentrum Hannover e.V. All Rights Reserved.